view testavr.c @ 24:2b0ed085b95b

- Change to 38400 baud. - Change to ATMega32 - Use interrupt driven serial comms (for rx anyway) - Reformat.
author darius
date Mon, 12 Dec 2005 23:37:16 +1030
parents 108a703c39e6
children 48056516b3eb
line wrap: on
line source

/*
 * Test various AVR bits and pieces
 *
 * $Id$
 *
 * Copyright (c) 2004
 *      Daniel O'Connor <darius@dons.net.au>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <util/delay.h>

#include "1wire.h"
#include "usb.h"

#define UART_BAUD_SELECT(baudRate,xtalCpu) ((xtalCpu)/((baudRate)*16l)-1)
#define UART_BAUD_RATE		38400

void		process_cmd(void);

void		uart_putsP(const char *addr);
void		uart_puts(const char *addr);
int		uart_putc(char c);
void		uart_puts_dec(uint8_t a, uint8_t l);
void		uart_puts_hex(uint8_t a);
char		uart_getc(void);

/* Receive buffer storage */
volatile struct {
    char	buf[40];
    uint8_t	state;
    uint8_t	len;
} cmd = {
    .state = 255,
    .len = 0
};

/* Rx complete */
ISR(USART_RXC_vect) {
    volatile char pit;
    char c;
    
    while (UCSRA & _BV(RXC)) {
	/* 255 means we're waiting for main to process the command,
	   just throw stuff away
	*/
	if (cmd.state == 255) {
	    pit = UDR;
	    continue;
	}
	c = UDR;
	
	/* End of line? */
	if (c == '\n' || c == '\r') {
	    cmd.buf[cmd.state + 1] = '\0';
	    uart_putsP(PSTR("\n\r"));
	    cmd.len = cmd.state;
	    cmd.state = 255;
	    continue;
	}
	
	/* Backspace/delete */
	if (c == 0x08 || c == 0x7f) {
	    if (cmd.state > 0) {
		cmd.state--;
		uart_putsP(PSTR("\010\040\010"));
	    }
	    continue;
	}
	
	/* Anything unprintable just ignore it */
	if (!isprint(c))
	    continue;

	cmd.buf[cmd.state] = tolower(c);

	/* Echo back to the user */
	uart_putc(cmd.buf[cmd.state]);
	
	cmd.state++;
	/* Over flow? */
	if (cmd.state == ((sizeof(cmd.buf) / sizeof(cmd.buf[0])) - 1)) {
	    uart_putsP(PSTR("\n\rLine too long"));
	    cmd.state = 0;
	    continue;
	}
    }
}

/* Tx complete */
ISR(USART_TXC_vect) {
	
}
    
int
main(void) {
    /* Disable interrupts while we frob stuff */
    cli();

    /* Disable JTAG (yes twice) */
    MCUCSR |= _BV(JTD);
    MCUCSR |= _BV(JTD);
    
    /* USB data bus (7:0) */
    DDRA = 0x00;
    PORTA = 0x00;
    
    /* USB control (3:0) */
    DDRB = 0x0e;
    PORTB = 0x00;
    
    /* GPIO (0:7) */
    DDRC = 0xff;
    PORTC = 0x00;

    /* GPIO (2:7) */
    DDRD = 0xfc;
    PORTD = 0x00;

    /* Init UART */
    UBRRH = UART_BAUD_SELECT(UART_BAUD_RATE, F_CPU) >> 8;
    UBRRL = (uint8_t)UART_BAUD_SELECT(UART_BAUD_RATE, F_CPU);
    
    /* Enable receiver and transmitter. Turn on transmit interrupts */
    UCSRA = 0;
    UCSRB = _BV(RXEN) | _BV(TXEN) | _BV(RXCIE);
    UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0);
    uart_putsP(PSTR("\n\r\n\r===============\n\r"
		    "Inited!\n\r\n\r"));

    /* Ready to go! */
    sei();

    usb_init();
    _delay_us(1000);
    
    uart_putsP(PSTR("> "));
    cmd.state = 0;
    
    /* Wait for user input or an "interrupt" */
    while (1) {
	if (cmd.state == 255) {
	    process_cmd();
	    uart_putsP(PSTR("> "));
	    /* Allow new characters to be processed */
	    cmd.state = 0;
	}
	
	if (!(PINB & _BV(PB0)))
	    usb_intr();
    }
}

void
process_cmd(void) {
    uint8_t	ROM[8];
    int8_t	i, arg;
    uint8_t	crc, buf[9];
    int8_t	temp;
    uint16_t	tfrac;

    /* User just pressed enter */
    if (cmd.len == 0)
	return;
	     
    if (cmd.buf[0] == '?') {
        uart_putsP(PSTR("rs               Reset and check for presence\n\r"
                        "sr               Search the bus for ROMs\n\r"
                        "re               Read a bit\n\r"
                        "rb               Read a byte\n\r"
                        "wr  bit          Write a bit\n\r"
                        "wb  byte         Write a byte (hex)\n\r"
                        "wc  cmd [ROMID]  Write command\n\r"
                        "te  ROMID        Read the temperature from a DS1820\n\r"
                        "in  port         Read from a port\n\r"
                        "out port val     Write to a port\n\r"
                        "ddr port [val]   Read/write DDR for a port\n\r"));
	    
	return;
    }
	
    i = strlen((char *)cmd.buf);
    if (cmd.len < 2)
	goto badcmd;
	
    if (cmd.buf[0] == 'r' && cmd.buf[1] == 's') {
	uart_putsP(PSTR("Resetting... "));
	    
	if (OWTouchReset() == 1)
	    uart_putsP(PSTR("No presence pulse found\n\r"));
	else
	    uart_putsP(PSTR("Presence pulse found\n\r"));
    } else if (cmd.buf[0] == 'r' && cmd.buf[1] == 'e') {
	if (OWReadBit())
	    uart_putsP(PSTR("Read a 1\n\r"));
	else
	    uart_putsP(PSTR("Read a 0\n\r"));
    } else if (cmd.buf[0] == 'r' && cmd.buf[1] == 'b') {
	uart_putsP(PSTR("Read a 0x"));
	uart_puts_hex(OWReadByte());
	uart_putsP(PSTR("\n\r"));
    } else if (cmd.buf[0] == 'w' && cmd.buf[1] == 'r') {
	arg = strtol((char *)cmd.buf + 3, (char **)NULL, 10);
	OWWriteBit(arg);
	uart_putsP(PSTR("Wrote a "));
	if (arg)
	    uart_putsP(PSTR("1\n\r"));
	else
	    uart_putsP(PSTR("0\n\r"));
    } else if (cmd.buf[0] == 'w' && cmd.buf[1] == 'b') {
	arg = (int)strtol((char *)cmd.buf + 3, (char **)NULL, 16); 
	OWWriteByte(arg);
    } else if (cmd.buf[0] == 'w' && cmd.buf[1] == 'c') {
	if (cmd.len < 5) {
	    uart_putsP(PSTR("No arguments\n\r"));
	    return;
	}
	    
	arg = (int)strtol((char *)cmd.buf + 3, (char **)NULL, 16);
	if (arg == 0) {
	    uart_putsP(PSTR("Unparseable command\n\r"));
	    return;
	}

	if (i == 5) {
	    OWSendCmd(NULL, arg);
	    return;
	}
	    
	if (i < 29) {
	    uart_putsP(PSTR("Can't parse ROM ID\n\r"));
	    return;
	}
	for (i = 0; i < 8; i++)
	    ROM[i] = (int)strtol((char *)cmd.buf + 6 + (3 * i), (char **)NULL, 16);

	OWSendCmd(ROM, arg);
    } else if (cmd.buf[0] == 't' && cmd.buf[1] == 'e') {
	if (cmd.len < 26) {
	    uart_putsP(PSTR("Unable to parse ROM ID\n\r"));
	    return;
	}

	for (i = 0; i < 8; i++)
	    ROM[i] = (int)strtol((char *)cmd.buf + 3 * (i + 1), (char **)NULL, 16);

	if (ROM[0] != OW_FAMILY_TEMP) {
	    uart_putsP(PSTR("ROM specified isn't a temperature sensor\n\r"));
	    return;
	}
	    
	OWSendCmd(ROM, OW_CONVERTT_CMD);
	i = 0;
	while (OWReadBit() == 0) {
	    i++;
	}
	OWSendCmd(ROM, OW_RD_SCR_CMD);
	crc = 0;
	for (i = 0; i < 9; i++) {
	    buf[i] = OWReadByte();
	    if (i < 8)
		OWCRC(buf[i], &crc);
	}
	    
	if (crc != buf[8]) {
	    uart_putsP(PSTR("CRC mismatch\n\r"));
	    return;
	}
	    
#if 0
	uart_putsP(PSTR("temperature "));
	uart_puts_dec(temp >> 4, 0);
	uart_putsP(PSTR("."));
	uart_puts_dec((temp << 12) / 6553, 0);
	uart_putsP(PSTR("\n\r"));
#else
	/* 0	Temperature LSB
	 * 1	Temperature MSB
	 * 2	Th
	 * 3	Tl
	 * 4	Reserved
	 * 5	Reserved
	 * 6	Count Remain
	 * 7	Count per C
	 * 8	CRC
	 */
#if 0
	for (i = 0; i < 9; i++) {
	    uart_puts_dec(buf[i], 0);
	    uart_putsP(PSTR("\n\r"));
	}
#endif
	temp = buf[0];
	if (buf[1] & 0x80)
	    temp -= 256;
	temp >>= 1;

	tfrac = buf[7] - buf[6];
	tfrac *= (uint16_t)100;
	tfrac /= buf[7];
	tfrac += 75;
	if (tfrac < 100) {
	    temp--;
	} else {
	    tfrac -= 100;
	}
	    
	if (temp < 0){
	    uart_putc('-');
	    uart_puts_dec(-temp, 0);
	} else
	    uart_puts_dec(temp, 0);
	uart_putsP(PSTR("."));
	uart_puts_dec(tfrac, 1);
	uart_putsP(PSTR("\n\r"));
	    
#endif
    } else if (cmd.buf[0] == 's' && cmd.buf[1] == 'r') {
	memset(ROM, 0, 8);

	i = OWFirst(ROM, 1, 0);
	do {
	    switch (i) {
		case OW_BADWIRE:
		    uart_putsP(PSTR("Presence pulse, but no module found, bad module/cabling?\n\r"));
		    break;

		case OW_NOPRESENCE:
		    uart_putsP(PSTR("No presence pulse found\n\r"));
		    break;
		    
		case OW_BADCRC:
		    uart_putsP(PSTR("Bad CRC\n\r"));
		    break;

		case OW_NOMODULES:
		case OW_FOUND:
		    break;
		    
		default:
		    uart_putsP(PSTR("Unknown error from 1 wire library\n\r"));
		    break;
	    }
		
	    if (i != OW_FOUND)
		break;

	    for (i = 0; i < 7; i++) {
		uart_puts_hex(ROM[i]);
		uart_putc(':');
	    }
	    uart_puts_hex(ROM[7]);
	    uart_putsP(PSTR("\n\r"));

	    i = OWNext(ROM, 1, 0);
	} while (1);
    } else if (cmd.buf[0] == 'i' && cmd.buf[1] == 'n') {
	switch (tolower(cmd.buf[3])) {
	    case 'a':
		crc = PINA;
		break;
		
	    case 'b':
		crc = PINB;
		break;
		
	    case 'c':
		crc = PINC;
		break;
		
	    case 'd':
		crc = PIND;
		break;
		
	    default:
		uart_putsP(PSTR("Unknown port\n\r"));
		return;
	}
	uart_putsP(PSTR("0x"));
	uart_puts_hex(crc);
	uart_putsP(PSTR("\n\r"));
    } else if (cmd.buf[0] == 'o' && cmd.buf[1] == 'u') {
	crc = strtol((char *)cmd.buf + 8, (char **)NULL, 16);
	switch (tolower(cmd.buf[4])) {
	    case 'a':
		PORTA = crc;
		break;
		
	    case 'b':
		PORTB = crc;
		break;
		
	    case 'c':
		PORTC = crc;
		break;
		
	    case 'd':
		PORTD = crc;
		break;
		
	    default:
		uart_putsP(PSTR("Unknown port\n\r"));
		return;
	}
	uart_putsP(PSTR("0x"));
	uart_puts_hex(crc);
	uart_putsP(PSTR("\n\r")); 
    } else if (cmd.buf[0] == 'u' && cmd.buf[1] == 's') {
	usb_gendata();
    } else {
      badcmd:
	uart_putsP(PSTR("Unknown command, ? for a list\n\r"));
    }
}
    
int
uart_putc(char c) {
    loop_until_bit_is_set(UCSRA, UDRE);
    UDR = c;

    return(0);
}

void
uart_putsP(const char *addr) {
    char c;

    while ((c = pgm_read_byte_near(addr++)))
	uart_putc(c);
}

void
uart_puts(const char *addr) {
    while (*addr)
	uart_putc(*addr++);
}

void
uart_puts_dec(uint8_t a, uint8_t l) {
    char	s[4];
    
    if (l && a < 10)
	uart_putsP(PSTR("0"));
    uart_puts(utoa(a, s, 10));
}

void
uart_puts_hex(uint8_t a) {
    char	s[3];
    
    if (a < 0x10)
	uart_putc('0');
    
    uart_puts(utoa(a, s, 16));
}

char
uart_getc(void) {
    while (!(UCSRA & _BV(RXC)))
	;
    
    return (UDR);
}